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Arcelor Research SA, Voie Romaine, BP 30320, 57283 Maizières-lès-Metz, France

Received 22 December 2004; received in revised form 24 March 2005; accepted 28 March 2005

Available online 17 May 2005

Abstract

We have constructed a computer model of the precipitation kinetics of vanadium carbonitride in steel that takes into account the

composition evolution of the precipitates with time. The model takes advantage of the fast diffusion of nitrogen and carbon com-

pared to niobium to derive the composition, size and rate of formation of the precipitates during their nucleation. A local equilib-

rium condition is used at the precipitate–matrix interface to derive the growth rate of each precipitate as a function of its size and the

current matrix composition. Coarsening occurs naturally on account of the Gibbs–Thomson capillarity effect. For isothermal heat

treatments, the calculations show that the precipitates nucleate as almost pure vanadium nitrides. They subsequently grow at the

expense of solute nitrogen. When nitrogen is exhausted, the solute carbon precipitates and progressively transforms the nitrides into

carbonitrides. The coarsening stage leads to a steady-state size distribution of niobium carbonitrides of the equilibrium composition.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In order to monitor mechanical properties in relation

to the microstructure, the knowledge of the precipita-

tion state at the end of a thermo-mechanical treatment

is of prime importance. For this purpose, various com-

puter models are developed to allow for the prediction

of the influence of the process parameters on the state
of precipitation. The model that we have developed is

one of them [1]. It predicts the precipitation kinetics

of mono- and di-atomic phases in ferrite and austenite

as a function of the time–temperature history. It is

based on the classical theories for diffusive phase trans-

formation and treats simultaneously the nucleation,

growth and coarsening phenomena. The state of precip-

itation that is predicted includes the particle size distri-

bution, their number and volume fraction. From these

values, the effects of the precipitates on the mechanical

properties can be calculated.

The occurrence of nitrogen in solid solution in steels
requires that the precipitation kinetics of the carbonit-

rides that form from the metallic elements in solid

solution be understood and modelled. One of the main

difficulties of this task is accounting for tri-atomic

particles having a variable C/N ratio. This paper

proposes a simple and fast computer model that treats

the precipitation of the vanadium carbonitride V(C,N).

This case is chosen here to exemplify the principles of a
new version of the Multipreci model, which is designed

to be valid for M(C,N)-type precipitates, M = V, Nb or

Ti.

1359-6454/$30.00 � 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actamat.2005.03.036

* Corresponding author. Present address: CIRIMAT – ENSIACET,

118 route de Narbonne, 31077 Toulouse cx 4, France. Tel.: +33 5 62 88

56 23; fax: +33 5 62 88 56 63.

E-mail addresses: philippe.maugis@arcelor.com, philippe.maugis

@ensiacet.fr (P. Maugis).

Acta Materialia 53 (2005) 3359–3367

www.actamat-journals.com



2. The multipreci model

2.1. V(C,N) versus VC

It is an experimental fact that the presence of nitro-

gen in austenite solid solution in addition to carbon dur-
ing the precipitation of vanadium results in the

formation of vanadium carbonitrides [2]. The ratio of

C/N in the precipitates depends on the alloy composi-

tion and the thermal cycle. A comprehensive model of

vanadium precipitation kinetics must take this fact into

account and determine the following:

� Composition of the nuclei.
� Nucleation rate.

� Growth rate.

� Time evolution of the particle composition.

� Gibbs–Thomson effect and coarsening.

In Sections 2 and 3 of this paper, we provide analytical

equations and a procedure to solve them to answer the

above-mentioned questions.

2.2. Physical assumptions

The assumptions of the model are classical for this

kind of problem:

� The precipitates are spherical particles.

� The thermodynamics of V(C,N) is an ideal solid solu-
tion of VC and VN.

� Nucleation occurs homogeneously according to the

classical theory.

� Growth is limited by the diffusion of vanadium in the

volume of the matrix.

� Coarsening is driven by the Gibbs–Thomson effect.

2.3. The class model

The kinetic equations of nucleation and growth are

used to compute the time evolution of the size histogram

of the particles. The size histogram is represented by the

number per unit volume and the particle composition of
each sized class. This approach has been chosen to ren-

der the size–composition correlation. We will see in the

following that this approach also has the advantage of

treating in a simple way non-trivial coarsening effects

of particles of varying composition.

Each class of size is characterised by its radius R and

its composition y. At each time step of the calculation,

nucleation is modelled by the creation of a new class
of radius R 0 and composition yg. During the same time

step, growth modifies the radius of each existing class of

particles. The growth rate takes into account the Gibbs–

Thomson effect. As a result, coarsening occurs by disso-

lution of the smallest particles to the advantage of the

largest ones (see Fig. 1).

3. Equations of the model

3.1. The model Fe–V–C–N steel

The generic case of vanadium carbonitride precipita-

tion in a model Fe–V–C–N steel is used here to exem-

plify the approach used in the Multipreci model. The

composition of the steel is shown in Table 1.
The steel is composed of a metallic alloying element,

V, and two interstitial elements C and N, the balance

being a majority of Fe atoms. The ratio of the interstitial

atoms is C/N � 15. The ratio of substitutional over

interstitial atoms is V/(C + N) � 0.25. This ratio being

less than 1, the maximum quantity of precipitated vana-
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Fig. 1. Schematics of the treatment of the classes of size, rendering nucleation, growth and coarsening.
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dium is not limited by the amount of interstitial elements

in the steel, but by the total amount of vanadium.

3.2. Thermodynamics

The thermodynamic model used in this paper is based

on the approach of [3] for predicting the austenite/car-

bonitride equilibrium in the Fe–Nb–V–C–N system.
The equilibrium at a given temperature in austenite is

the state towards which the system evolves from its ini-

tial, out of equilibrium state. It is useful to compute this

state as a reference for the precipitation kinetics.

The equilibrium between the austenite matrix and the

carbonitride VCyN1� y is described by the mass action

law

RT ln aeV þ y ln aeC þ ð1� yÞ ln aeN
� � ¼ DG�

VCyN1�y
. ð1Þ

In this equation, aei is the activity of the element i (i = V,

C, N) at equilibrium. In the case of infinite dilution, the

activity is proportional to the atomic fraction at equilib-
rium X e

i (Henry state of reference). DG�
VCyN1�y

is the

Gibbs energy of formation of the carbonitride and is a

function of its composition y. VC and VN are both of

the face-centered cubic NaCl type crystal structure of

very similar molar volume (see Table 2). We thus con-

sider the carbonitride as an ideal mix of VC and VN,

and following Hillert and Staffansson [4], we can write

DG�
VCyN1�y

¼ yDG�
VC þ ð1� yÞDG�

VN

þ RT y ln y þ ð1� yÞ lnð1� yÞ½ �; ð2Þ
where DG�

VC and DG�
VN are the Gibbs energy of forma-

tion of VC and VN, respectively. According to our
assumptions, Eq. (2) does not include the regular solu-

tion parameters that would otherwise account for inter-

actions between VC and VN. In other words, we have

neglected the excess molar free energy of mixing of VC

and VN. Let us further assume that the austenite solid

solution is dilute enough such that the activity coeffi-

cients of V, C and N do not depend on concentrations.

Then, the thermodynamic functions DG�
VC and DG�

VN

are related to the solubility products for the individual

VC or VN compounds in equilibrium with the matrix

by the relations

lnðX e
V � X e

CÞ ¼ DG�
VC=RT ;

lnðX e
V � X e

NÞ ¼ DG�
VN=RT .

ð3Þ

By substituting Eq. (2) into Eq. (1), it is easily shown

that the equilibrium equations are [5,6]

yKVC ¼ X e
V � X e

C;

ð1� yÞKVN ¼ X e
V � X e

N;
ð4Þ

where KVC and KVN are the solubility products of VC

and VN, respectively. This set of equations will be used

later in this chapter for the derivation of the nucleation

and growth rates. Relations (4) in association with the

conservation equations of the alloying elements allow

for the calculation of the equilibrium concentration of
V, C and N in solid solution, as well as the composition

y of the carbonitride. The values of the solubility prod-

ucts can be found in the literature, and we have chosen

the data selected by Gladman [7] (Table 2 and Fig. 2):

From Fig. 2, it can be seen that the solubility product

of VN is more than 100 times smaller than that of VC.

In other words, vanadium nitride is much more thermo-

dynamically stable than vanadium carbide in austenite.
This will have important consequences on the kinetics

of nucleation and growth, as will be demonstrated later.

The results of the calculation of the equilibrium state

as a function of temperature are summarised in Fig. 3.

The temperature for complete dissolution is 1150 �C.
Below this temperature, when the temperature

decreases:

� Nitrogen precipitation increases.

� The proportion of carbon in the precipitates

increases.

� Under 900 �C, the full precipitation of nitrogen is

achieved.

Table 2

Logarithm of the solubility products of VC and VN in austenite (T in

K, compositions in wt.%)

Solubility product Molar volume

VC log(%V Æ %C) = 6.72�9500/T 10.81

VN log(%V Æ %N) = 3.02�7840/T 10.52

Molar volumes of VC and VN in cm3 mol�1.
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Fig. 2. Arrhenius plot of the solubility product of VC and VN in

austenite from Table 2 (T in K, compositions in wt.%). The ratio KVC/

KVN is plotted by dashed line.

Table 1

Composition of the steel, in weight ppm and atomic fraction

Weight (ppm) Atomic fraction

V 2150 2.36 · 10�3

C 1900 8.87 · 10�3

N 150 6.0 · 10�4
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We note that the total precipitation of vanadium can-

not be achieved in austenite (T > 800 �C).

3.3. Nucleation

Neglecting the strain energy term, theGibbs energy for
the formation of a spherical embryo of vanadium carbo-

nitride from the elements in solid solution is classically ex-

pressed as the sum of a volume and an interface term

DG ¼ Dg
4

3
pR3 þ c4pR2. ð5Þ

In this equation, Dg is the driving energy for nucleation

per unit volume and R is the radius of the embryo. c is

its interface energy with the matrix and is supposed to be

isotropic. The expression for the driving energy Dg is

needed for the derivation of the size and composition

of the critical nucleus. To find this expression we pro-

ceed as follows.

3.3.1. Driving energy for nucleation

In the simple case of a binary compound of formula

AyB1� y, the driving energy for nucleation is

V mDg ¼ lAyB1�y
ðyÞ � ðylA þ ð1� yÞlBÞ. ð6Þ

In the case of the VCyN1� y compound, Eq. (6) can be

generalised. The chemical potentials li are developed as

a function of the molar fractions in solid solution X ss
i

according to the regular matrix solid solution assump-

tion, and the equilibrium fractions X e
i are introduced.

This leads to the following expression [8,9]:

Dg¼� RT
V VCN

ln
X ss

V

X e
V

� �
þ y ln

X ss
C

X e
C

� �
þð1� yÞ ln X ss

N

X e
N

� �� �
;

ð7Þ
where VVCN is the molar volume of the vanadium

carbonitride. Taking into account that the molar vol-

ume of VC and VN are almost identical, VVCN is con-

sidered here to be independent of the composition y

(see Table 3).

3.3.2. Composition of the critical nucleus

Using Eq. (4), the unknown equilibrium composi-

tions in the solid solution in Eq. (7) are replaced by

the solubility products KVC and KVN

DgðyÞ ¼ � RT
V VCN

ln
X ss

V

� 	
X ss

C

� 	y
X ss

N

� 	1�y

ðyKVCÞy ð1� yÞKVN½ �1�y

" #
. ð8Þ

Here, Dg is a function of y. We state that the nuclei that

appear in the matrix are those that produce the maxi-

mum variation of Gibbs energy during their formation.

The composition of the critical nucleus is then the value

of y that minimises the driving energy (8) for nucleation.
The expression is found to be

yg ¼ 1þ X ss
N

X ss
C

KVC

KVN

� ��1

. ð9Þ

This equation shows that the composition yg of the crit-

ical nucleus does not depend on the vanadium concen-

tration in solid solution, and depends exclusively on

� the temperature, via the ratio KVC/KVN,

� the composition in C and N of the solid solution, via

the ratio X ss
C=X

ss
N.

Table 3

Values of the entry data of the calculations

Symbol Value

Vanadium nominal atomic fraction XV 2.36 · 10�3

Carbon nominal atomic fraction XC 8.87 · 10�3

Nitrogen nominal atomic fraction XN 6.0 · 10�4

Carbon diffusion coefficient (cm2/s) DC 0.1exp(�137,500/RT)

Nitrogen diffusion coefficient (cm2/s) DN 0.91exp(�168,600/RT)

Vanadium diffusion coefficient (cm2/s) DV 0.25exp(�264,200/RT)

Interface energy c 0.5 J m�2

Molar volume of VCN VVCN 10.65 cm3 mol�1

Molar volume of austenite VFe 7.11 cm3 mol�1

Solubility product of VN log(KVN) 3.02 � 7840/T

Solubility product of VC log(KVC) 6.72 � 9500/T

Except for the interface energy, the physical constants are from Gladman [7].
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Notice that Eq. (9) relates in a linear way the ratio C/N

in the critical nucleus to the ratio C/N in solid solution

ðXC=XNÞnucleus ¼ ðKVN=KVCÞðXC=XNÞmatrix. ð10Þ
It appears from Eq. (10) and Table 2 that for a given

X ss
C=X

ss
N ratio, a decrease in temperature leads to an

enrichment in carbon of the carbonitride. On the other

hand, if carbon and nitrogen in solid solution are of

equal order of magnitude, the nucleus will be very rich

in nitrogen, similar to a pure vanadium nitride. In par-

ticular, for the ratio C/N @ 15, characteristic of our

reference steel, the composition of the carbonitride is
VC0.1N0.9. The explanation for this is as follows: as we

have seen previously, the nitride VN is much more stable

thermodynamically than the carbide VC. Then, it is the

nucleation of VN that reduces most the total Gibbs en-

ergy. This is rendered by the ratio KVC/KVN � 1 present

in Eq. (9). The counterbalance of this effect of relative

stability is possible if the carbon concentration in solid

solution is increased relative to the nitrogen concentra-
tion. Hence at 800 �C, nuclei of equimolar composition

will appear if the carbon concentration in solid solution

is approximately 110 times that of nitrogen.

3.3.3. Radius of the critical nucleus

Given the composition of the critical nucleus, its ra-

dius can be calculated. The Gibbs energy for the forma-

tion of an embryo, DG (Eq. (5)), reaches a maximum
value DG* for a particular value of R, the critical radius

R* = �2c/Dg(yg). R* corresponds to a nucleus that is in

equilibrium with the matrix, taking into account the ra-

dius-dependent Gibbs–Thomson effect. For a precipitate

to be able to grow effectively, it has to have a radius R 0

slightly higher than R* such that DG(R 0) = DG* � kBT,

where kB is the Boltzmann constant. R 0 is the solution

of the following equation:

R03 þ 3c
Dg

R02 ¼ 4

3

c3

Dg3
� 3kBT
4pDg

� �
. ð11Þ

The approximate solution

R0 ¼ R	 þ 1

2

ffiffiffiffiffiffiffiffi
kBT
pc

s
; ð12Þ

proves to be precise enough in practice.

In the Multipreci model, we treat the nucleation stage

at each time step as follows: a new class is introduced in

the histogram of size of radius R 0 and composition yg
according to Eqs. (9) and (12). The number of precipi-
tates per volume N of size R 0 is given by the classical

non-stationary nucleation rate equation [10]

dN
dt

¼ N 0 exp �DG	

kT

� �
CZ 1� exp

�t
s

� �h i
; ð13Þ

where N0 is the number of substitutional sites per

volume in austenite, C the absorption frequency of a

vanadium atom by the critical nucleus, Z is the

Zeldovitch constant and s is the incubation time. Note

that the incorporation of the Zeldovitch constant

in this equation is consistent with the choice of R 0

as the radius of the precipitates introduced by

nucleation.

3.4. Growth

For each individual class of particle of radius R, the

growth rate has to be established as a function of the

composition of the solid solution. Carbon and nitrogen,

being interstitial elements, are very fast diffusing species

compared to vanadium. As a result, the growth of a pre-
cipitate is limited by the diffusion of vanadium from the

matrix towards the precipitate. A gradient in vanadium

concentration builds around the precipitate while the

concentration profiles of carbon and nitrogen are almost

flat.

To a very good approximation, the quasi-stationary

approximation for the diffusion profiles can be applied.

From the mass balance at the precipitate/matrix inter-
face the classical Zener equation for the growth rate is

derived [11]. For vanadium, the equation is

dR
dt

¼ DV

R
X ss

V � X i
V

V Fe

V VCN
� X i

V

. ð14Þ

During an isothermal precipitation treatment, the com-
position of vanadium in solid solution X ss

V decreases, and

consequently the growth rate decreases. In the mean-

time, the composition of vanadium at the interface X i
V

evolves. Note that Eq. (14) is also valid for dissolution,

a feature that is used for the modelling of the coarsening

phenomenon (see Section 3.5).

Growth occurs by accretion of successive shells of

carbonitrides. Each shell has its specific composition
yc. The calculation of the shell composition is done to-

gether with the calculation of the matrix composition

in the vicinity of the interface by the simultaneous reso-

lution of the local equilibrium and a flux-compatibility

condition:

� The local equilibrium of the shell with the surround-

ing matrix is given by Eq. (4)

yKVC ¼ X i
V � X i

C;

ð1� yÞKVN ¼ X i
V � X i

N.
ð15Þ

� The composition of the precipitating shell has to be
compatible with the flux of precipitating species.

This can be written in a simplified way as JC = yJV
and JN = (1 � y)JV. According to the quasi-station-

ary assumption, this leads to

DC X i
C � X ss

C

� 	 ¼ yDV X i
V � X ss

V

� 	
;

DN X i
N � X ss

N

� 	 ¼ ð1� yÞDV X i
V � X ss

V

� 	
.

ð16Þ
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At each time interval, the solution of the set of equa-

tions (15) and (16) gives the composition yc of the shell

and the concentrations X i
V; X

i
N and X i

C at the interface.

From the condition DC � DV and DN � DV, a very

good approximation of the shell composition can be

achieved, that is

yc ¼ 1þ X ss
N

X ss
C

KVC

KVN

� ��1

. ð17Þ

It appears that, at each time interval, the composition

of the shell is the same as that of the critical nucleus

(yc = yg), and is only driven by the composition in car-

bon and nitrogen of the solid solution. This can be

understood by the following reasoning. Notice first
that the composition of the shell is independent of

the diffusion coefficients of carbon and nitrogen

(Eq. (17)). This non-trivial result is due to the fact

that C and N, being interstitial elements, are very fast

diffusing species compared to V. As a result, the

characteristic time for C and N diffusion towards

the precipitate is much smaller than for V. In other

words, C and N have enough time to equilibrate with
one another around the particle during the precipita-

tion of vanadium. They do so such that the Gibbs

energy of the interfacial region is minimum. This min-

imisation criterion is exactly the one that led to the

expression of the critical nucleus, implying that

yc = yg.

3.5. Coarsening

Coarsening is the process by which the smallest pre-

cipitates dissolve to the profit of the bigger ones, leading

to the coarsening of the size distribution. This phenom-

enon is particularly important when the system reaches

the equilibrium precipitate fraction. It is to be noted that

coarsening can occur at every stage of the precipitation

process, even when the matrix is still supersaturated, as
will be demonstrated by the numerical results later. The

coarsening will automatically be dealt with by the class

treatment as soon as the growth rate is written in a

proper way as a function of the precipitate size. We

proceed as follows.

The incorporation of the interface energy in the

total energy of formation of a precipitation of radius

R introduces an additional curvature-dependent term
to the chemical potential of the precipitate, equal to

2cVVCN/R. We introduce this term in the right-hand

side of Eq. (1) and perform the calculation of the

equations of local equilibrium of the shell with the

surrounding matrix as in Section 3.2. This leads to a

similar set of equilibrium equations as Eq. (4), where

the solubility products of VC and VN have to be re-

placed by the radius-dependent functions KVC(R) and
KVN(R)

KVCðRÞ ¼ KVC exp
2cV VCN

RRgT

� �
;

KVNðRÞ ¼ KVN exp
2cV VCN

RRgT

� �
.

ð18Þ

In Eq. (18), the usual solubility products are just mul-
tiplied by a factor of exp(2cVVCN/RRgT), where Rg is

the gas constant. To treat the coarsening phenome-

non, the radius-dependant solubility products are sim-

ply substituted for KVN and KVC in Eqs. (15) and

(16). The solution of this modified system of equation

allows for the incorporation of the Gibbs–Thomson

effect on the concentrations X i
V; X

i
N and X i

C at the

interface. The interface compositions are affected in
such a way that for supercritical precipitates

(R > R*) the condition X ss
V � X i

V > 0 applies. Accord-

ing to Eq. (14), those precipitates grow. On the con-

trary, the undercritical precipitates dissolve since for

them X ss
V � X i

V is negative. This treatment renders in

a natural way the coarsening phenomenon without

any additional hypothesis.

In addition, it can be easily shown that the composi-
tion of the shell at a given time does not depend on the

size of the precipitate, and is still given by Eq. (17).

4. Results of the model

4.1. Calculation procedure

The model is programmed in FORTRAN language.

In addition to the physical constants, an initial state of

precipitation can be introduced. The model computes

the histogram of size at each time along any thermal cy-

cle, including stages of reheating and cooling. The calcu-

lation proceeds iteratively: at each time step, nucleation

introduces a new class of size in the histogram and the

new radius of every existing class is computed. The mass
balance in the system gives the new composition of the

solid solution, before the next calculation loop. The cal-

culations presented in this section run in less than 1 min

on a PC computer.

4.2. Entry data

The Multipreci model is applied here to isothermal
treatments of the model alloy presented above. The

entry data of the model are summarised in Table 3.

4.3. Isotherms of 800 and 900 �C

The isotherm at 800 �C illustrates the various steps of

precipitate formation through the stages of nucleation,

growth and coarsening. Those stages are in fact non-
fully differentiated as discussed in detail in the following

sections. The isotherm at 900 �C is used to illustrate the
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non-trivial coarsening stage that occurs with composi-

tion-varying particles.

4.3.1. Isotherm of 800 �C
As can be seen in Fig. 4(a), the nucleation rate of the

particles increases rapidly during the first 5 s of transi-
tory nucleation stage. The precipitates that form are

nitrogen rich VC0.1N0.9 (Fig. 4(g)). It can be shown that

the presence of nitrogen increases considerably the

nucleation rate of the precipitates, since the driving en-

ergy for the nucleation of VC0.1N0.9 is much higher than

that of VC (see Section 3.2). During the nucleation

stage, nitrogen and vanadium are consumed from the
matrix, which decreases the driving energy and tends
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Fig. 4. Results of the calculations for the holding temperature of 800 �C. The entry data are in Table 3: (a) nucleation rate, (b) histograms of size,

(c) mean radius, (d) volume fraction, (e) volume number of particles, (f) solid solution, and (g) mean particle composition.
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to slow down the nucleation rate. The initial critical ra-

dius of nucleation is about 0.3 nm (Fig. 4(c)). After


20 s, the composition of the solid solution reaches a

value where the nucleation rate is practically zero and

nucleation stops.

From this point, the number of particles begins to de-
crease (Fig. 4(e)). A transitory coarsening stage occurs,

during which the critical radius has not yet reached

the average radius (Fig. 4(c)). After 
35 s, almost all

nitrogen initially in solid solution has been consumed

from the matrix and growth now proceeds by precipita-

tion of carbon and vanadium in the form of VC shells

(Fig. 4(f)). As a result, the average carbon composition

of the precipitates grows slowly.
A time t = 500 s, the critical radius has reached the

mean radius of the particles and coarsening develops

in a quasi-steady state manner, leading to an endless

growth of the mean radius of the particles and a stea-

dy decrease of their total number per unit volume

(Fig. 4(c) and (e)). The composition of the precipitates

reaches its equilibrium value of y = 70% after 106 s of

annealing. In the meantime, the volume fraction of the
precipitates has increased towards its equilibrium va-

lue of 0.3%.

Fig. 4(b) shows the time evolution of the size histo-

gram. Nucleation builds up the histogram initially

around small radii. The whole distribution shifts to the

right by growth. After a while, coarsening is visible in

the decrease of the total number of particles and the

shift of the mean radius. The shape of the histograms

at long holding times is qualitatively similar, but not

identical to the theoretical LSW distribution. This fact

is extensively discussed in [12] and will be published in

the future.

Fig. 5 is a schematic representation of the evolution

of the successive shell accretions that form the precip-
itates. Starting from a nitrogen rich core, the

successive shells are richer and richer in carbon. The

overall composition of the particle is that of a

carbonitride V(C,N). During the growth of the

precipitates, their composition is likely to homogenise

somewhat by internal interdiffusion of carbon and

nitrogen. This phenomenon is not taken into account

in the model, but it is supposed to have an effect
on the kinetics of growth and the final state of

precipitation.

VCyN1-y

VC

VC0.1N0.9

Fig. 5. Schematic representation of the accretion sequence that forms

a V(C,N) precipitate.
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Fig. 6. Results of the calculations for the holding temperature of 900 �C. The entry data are in Table 3: (a) mean radius, (b) volume fraction,

(c) volume number of particles, and (d) mean particle composition.
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4.3.2. Isotherm of 900 �C
At 900 �C, precipitation occurs in three steps: the first

step, corresponding to time t < 200 s, is the nucleation

and growth of nitrogen-rich particles (see Fig. 6). A sta-

sis period follows (200 s < t < 500 s), during which the

size histogram evolves at constant total number and
mean radius of the particles. After 500 s, an atypical

coarsening phenomenon is at work: indeed, the total

number of particles decreases while the mean radius in-

creases, as a result of the growth of the big particles at

the expense of the smallest. However, this occurs while

in the meantime the mean composition of the particles

evolves from y = 6% to 50%, and while the volume frac-

tion increases from 0.1% towards its equilibrium value
of 0.165%. This leads to a deviation from the usual

time-scaling laws of R3 � t and N�1 � t.

5. Conclusion

The model presented here proposes a methodology

that solves the difficulty of dealing with tri-atomic and
composition-varying precipitates. This approach allows

for the simple account of nucleation, growth and coars-

ening of M(C,N)-type carbonitrides. The application of

the model to a Fe–V–C–N alloy illustrates the promi-

nent role of nitrogen in the precipitation sequence and

kinetics. This approach will be extended in the future

to the case of (M,M 0)(C,N) mixed carbonitrides

(M,M 0 = V, Nb, Ti).
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