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Cost, performance prediction and optimization
of a vanadium flow battery by machine-learning†

Tianyu Li, Feng Xing, Tao Liu, Jiawei Sun, Dingqin Shi, Huamin Zhang and
Xianfeng Li *

Performance optimization and cost reduction of a vanadium flow battery (VFB) system is essential for its

commercialization and application in large-scale energy storage. However, developing a VFB stack from

lab to industrial scale can take years of experiments due to the influence of complex factors, from key

materials to the battery architecture. Herein, we have developed an innovative machine learning (ML)

methodology to optimize and predict the efficiencies and costs of VFBs with extreme accuracy, based

on our database of over 100 stacks with varying power rates. The results indicated that the cost of a VFB

system (S-cost) at energy/power (E/P) = 4 h can reach around 223 $ (kW h)�1, when the operating

current density reaches 200 mA cm�2, while the voltage efficiency (VE) and utilization ratio of the

electrolyte (UE) are maintained above 90% and 80%, respectively. This work highlights the potential of

the ML methodology to guide stack design and optimization of flow batteries to further accelerate their

commercialization.

Broader context
The widespread application of renewable energies such as wind and solar power calls for economical and efficient energy-storage systems owing to their
inherent intermittent nature. Flow batteries, especially vanadium flow batteries (VFBs), are among the most attractive technologies for large-scale energy
storage, owing to their flexible design, high safety, high efficiency and long cycle life. Currently, VFBs are at a commercial demonstration stage; however, the
relatively high cost restricts their further commercialization. Normally, the performance of a VFB stack varies with the materials, cell architecture and operation
conditions, while the cost of a VFB system is highly dependent on its performance. It requires considerable effort and time to optimize the materials and
structures of a VFB stack by experiment. Herein, we applied an innovative machine learning (ML) methodology to optimize and predict the performance and
cost of a VFB system with extremely high accuracy, based on a database of over 100 stacks. Based on the ML model, the main factors that affect the battery
performance and cost were clarified and the way to optimize the system architecture was provided. This work highlights the prospects of combining
experimental data with statistics and ML algorithms to assist optimization and performance prediction of flow battery systems.

Introduction

The widespread application of renewable energies such as wind
and solar power calls for economical and efficient energy-
storage systems owing to their inherent intermittent nature.1

In recent decades, various energy-storage technologies have
been developed. These include physical methods such as
pumped hydro and compressed air energy storage systems
and electrochemical energy storage (EES) technologies.2 Flow

batteries, especially vanadium flow batteries (VFBs), are among
the most attractive technologies for large-scale energy storage,
owing to their flexible design, safety, efficiency, and long cycle
life.3,4 The performance and cost of a VFB system are highly
related to the stack and electrolyte. Numerous efforts have
explored high-performance key materials (membranes,5–12

electrodes,13–17 and bipolar plates18) and the optimization of
the stack architecture including design of flow fields, optimiz-
ing the electrode compression ratio, and porosity.19–22 Thus,
the cost of VFB systems has lowered accordingly. Currently,
VFBs are at a commercial demonstration stage; different pro-
jects ranging from kilowatts to over 100 megawatts have been
implemented for different applications. However, the relatively
high cost restricts further commercialization. Normally, the
cost of a VFB system generally includes the power cost (P-cost)
and energy cost (E-cost). The P-cost of a stack is determined by
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the stack performance. However, although the E-cost is closely
related to the UE, it is also related to the stack performance,
since the UE is correlated with the voltage efficiency of a stack.
Normally, the performance of a VFB stack varies with the
materials, architecture, and operation conditions, while the
cost of a VFB system is highly dependent on its performance.
It requires considerable effort and time to optimize the materials
and structures of a VFB stack by experiment. Therefore, exploiting
novel methods to accurately predict the performance and cost
of a VFB stack and further systems is crucial to accelerate the
research and development (R&D) of VFBs and their further
commercialization.

Currently, the R&D of VFB stacks, including key materials,
stack structure and performance optimization, is based on
simulation, design, and experiments.19–31 This approach is
time consuming and expensive; moreover, it is difficult to
clarify the influence of various factors on the system perfor-
mance and cost. Previously, some techno-economic assessment
models for the VFB system were established to assess the
performance and cost. For example, Minke et al. performed
a comprehensive techno-economic assessment of VFBs by
combining the cost of key materials like electrodes32 and
membranes,33 and proposed a transparent cost model for
megawatt-size VFB systems34 by dividing the system into
P-cost and E-cost. Jens et al.35 proposed an approach to
calculate specific system costs and created a cost breakdown
for a typical 10 kW/120 kW h vanadium redox battery (VRB)
system. Li et al.36 performed an economic analysis of the VRB
system based on their improvement in electrolytes and cell
stacks. The techno-economic assessment models have shown
certain guiding significance for commercialization of VFBs;
however, none of those models were based on experimental
data with various operating conditions (i.e., an operating
current density range of 80 to 300 mA cm�2) for VFB stacks.
Therefore, it is vital for the R&D of VFB stacks and their rapid
commercialization to develop an effective methodology that
can accurately predict the stack performance and further
dynamically evaluate the cost of a VFB system.

In the past decade, ML approaches have shown great potential
in accelerating material design,37–41 planning chemical
synthesis,42,43 tuning catalyst activity,44–48 and optimizing
systems,49,50 and can thus predict and optimize performance
in an efficient way. For example, Severson et al.51 established a
model that accurately predicted the cycle life of commercial
lithium iron phosphate/graphite cells using early-cycle data
through high-throughput experiments and ML. Later, Attia
et al.52 developed and demonstrated a closed-loop optimization
of fast-charging protocols, which efficiently optimized a para-
meter space specifying the current and voltage profiles for
maximizing the battery cycle life through ML. However, very
rarely have studies focused on the prediction and optimization
of VFB systems by ML, as it is difficult to collect sufficient
parallel data on stacks with different parameters. In addition,
most current research of flow batteries is focused on a single
cell, which is atypical in real applications. To date, there is no
model that can accurately predict the relationship between the

materials and structures of VFB stacks, the operation conditions,
the stack performance and the dynamic performance-cost of the
system. This is due to the complexity of the influencing factors
among the high-dimensional data and the discontinuity of basic
R&D and industrialization research.

In the last two decades, our group has conducted funda-
mental and applied research on VFBs. Where many stacks were
assembled, sufficient data is available for the ML methodology.
Here, an ML framework that can assist in R&D of a high-
performance VFB stack and accurately predict the relationship
between the operating parameters and performance-cost
of each VFB stack and system was built based on our R&D
accumulation in VFB fields. The operating current density was
used as the main feature. To characterize the VE, energy
efficiency (EE), UE and E-cost, another 18 features were used,
while a further 21 features were used to characterize the P-cost.
Our ML models can achieve mean absolute prediction error
(MPAE) within 1% for quantitatively predicting the VE and EE,
and within 5.2% for the UE, P-cost and E-cost. Moreover, the
P-cost, E-cost and S-cost of the optimized stack are lowered by
2.98%, 2.49% and 2.69%, respectively, compared to those of the
original stack named ‘‘VFB 20190225’’ under the optimal
operating conditions. Furthermore, the optimal operating
S-cost in 2019 was reduced by 43.79% compared with that in
2013. Based on currently available technology, it is predicted
that the S-cost of a VFB system can be reduced to $223 per kW h
(at E/P = 4 h) under 200 mA cm�2 with VE = 90% and UE = 80%.
This work highlights the prospects of combining experimental
data with statistics and an ML algorithm to assist performance
optimization and prediction of future flow battery systems.

Results and discussion
Methods

Performance test of VFB stacks. All materials, including
their structure parameters and price, for each stack are listed
in Dataset-1 (the ‘‘latest’’ dataset, which means that the data
was collected from 2018 to 2020) and Dataset-2 (the ‘‘earlier’’
dataset, which means that the data was collected from 2012 to
2018). The exchange rate of 1 Dollar to Ren Min Bi (RMB)
is settled at 7.1. The type 1 bipolar plate (BP Type 1) and
membrane (M Type 1) were self-made. The test was performed
under a constant charging and discharging current with an
Arbin 2000. The charging cutoff voltage of a single cell is given
in the column named ‘‘Charging Cut-off Voltage (V/Cell)’’ in
each dataset, which was 1.55 V and 1.58 V, respectively. The
P-cost, E-cost, and S-cost are the costs calculated from the raw
materials for the VFB stacks and electrolytes in this study. The
P-cost is determined by the stack and the E-cost is from the
electrolytes. Note that the cost of pipes and the control system
is not included.

Machine-learning models and evaluation criterion. The data
processing and ML modeling are performed with Python
3.7 using the NumPy, pandas and sklearn packages. Linear
regression was applied to handle the multidimensional data.
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First, one-hot encoding was used to handle the category para-
meters such as the electrode, bipolar plate, and flow field, and
then a regularization technique was applied to the numerical
dataset. A linear regression model can be calculated by

f (X, w, b) = wTX + b (1)

where X = hx1, x2,. . ., xni is the n-dimensional feature vector.
w = hw1, w2,. . ., wni is the corresponding coefficient vector of X,
and b is the intercept. Here, f (X, w, b) can be VE (%), EE (%), UE
(%), P-cost, and E-cost, respectively. The generalized least
squares method was employed to minimize the loss function
L(w, b), and the objective formula is as follows,

argmin
w;b

Lðw; bÞ ¼ argmin
w;b

Xm
i¼1

fi X;w; bð Þ � yi
� �2

(2)

where L(w, b) is the loss function, y = h y1, y2,. . ., ymi is the target
function, m is the number of data in the dataset, and yi is one
component in y.

To evaluate the ML prediction performance, three standards
are followed:

(1) Coefficient of determination (R2)

R2 ¼ 1�RSS

TSS
¼ 1�

P
i

yi � fið Þ2P
i

yi � ŷð Þ2
(3)

where RSS is the residual sum of squares and TSS is the total
sum of squares. fi is the prediction value of xi and ŷ is the
average value of the target function.

(2) Root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

fi � f̂
� �2s

(4)

where f̂ is the average value of the predicted results.
(3) Mean absolute prediction error (MAPE)

MAPE ¼ 1

N

XN
i¼1

fi � yi

yi

����
����� 100% (5)

ML is a general term, which is based on data-driven models
and statistics. When we have enough effective raw data and
give the computer an association rule discovery algorithm,

the computer has the potential to discover unknown correla-
tions between the input and output, which is also known as
the ‘‘training’’ process. We can then use this trained model to
predict the quantitative correspondence between the multiple
input features and target output variables. Here an operating
parameter-based (operating current density) method was
applied to build the performance and cost prediction model.
According to Fig. S1(a) (ESI†), there is a strong linear correlation
between the operating current density and stack efficiencies, while
the relationship between the operating current density and cost is
near an exponential form [Fig. S1(b), ESI†]. After calculating
the natural logarithm of P-cost and E-cost (they are referred to as
adjusted costs in the following), there is also a linear correlation
between the operating current density and adjusted cost.
ln(power cost – 26) and ln(energy cost – 80) were chosen as the
target function because the maximum absolute relative deviation
(MARD) of ln(power cost – 26) and ln(energy cost – 80) is almost
the lowest, and the MARD between the training set and test set is
basically consistent (see Table S1, ESI†). Although linear regression
is a traditional tool in mathematics and engineering, it has a
unique advantage, that is, the interpretability between the features
and the result is excellent. Therefore, an operating parameter-
based ML algorithm was applied to predict the stack efficiencies
and cost.

Accuracy evaluations of operating parameter-based ML models

In linear regression, the selection of appropriate features is
especially important. Since the operating current density has
a strong linear correlation with the stack efficiencies and
adjusted costs, the operating current density is regarded as
the main feature. All materials and some main structures which
are considered to have a significant influence on the perfor-
mance of the stack are then used as the other auxiliary features.
All features for each model are shown in the datasets.

After building Dataset-1, we used 75% of the data as the
training set, and the remaining 25% as the test set to evaluate
the predictive accuracies of the model. The accuracy evalua-
tions of our ‘‘full features’’ models for Dataset-1 are shown in
Table 1, and the residual plots are shown in Fig. 1(a)–(g). The
accuracy evaluations of our ‘‘only current density’’ models for
Dataset-1 are shown in Table S2 (ESI†) and the residual plots
are shown in Fig. S2(a)–(g) (ESI†). The comparison of the MAPE

Table 1 Accuracy evaluations of the ‘‘full features’’ models. The coefficient of determination (R2), root mean square error (RMSE) and mean absolute
prediction error (MAPE) are used to evaluate the precision of the linear regression models that are used to predict VE, EE, UE, ln(power cost – 26),
ln(energy cost – 80), P-cost, and E-cost

‘‘Full features’’ models

R2 RMSE MAPE (%)

Training Test Training Test Training Test

VE (%) 0.9808 0.9848 0.5989 0.5141 0.54 0.47
EE (%) 0.9765 0.9779 0.6495 0.5920 0.62 0.56
UE (%) 0.9627 0.9494 2.2639 2.4031 3.40 3.14
ln(power cost – 26) 0.9715 0.9740 0.0840 0.0813 5.14(P-cost) 4.97(P-cost)
ln(energy cost – 80) 0.9727 0.9636 0.0659 0.0688 3.22(E-cost) 3.08(E-cost)
Power cost 0.8744 0.8859 23.3839 21.5280 12.47 11.22
Energy cost 0.9322 0.9220 16.7807 14.4318 5.69 7.31

The unit of P-cost and E-cost is ($ (kW h)�1 at E/P = 4 h).
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between the ‘‘full features’’ models and the ‘‘only current
density’’ models is shown in Fig. 1(h). The MAPE (training/test)
of the ‘‘full features’’ models for VE, EE, UE, P-cost and E-cost
are 0.54%/0.47%, 0.62%/0.56%, 3.40%/3.14%, 5.14%/4.97%,
and 3.22%/3.08%, respectively, which are far more accurate
than those of the ‘‘only current density’’ models. The results
indicate the significance of the ML methodology and lay a good
foundation for analysing the relationship between the perfor-
mance and S-cost of VFB systems.

Comparison of results between experiment and ‘‘full features’’
models for Dataset-1

Based on our ‘‘full features’’ models, we predicted the efficien-
cies and cost variation with the operating current densities
ranging from 100 mA cm�2 to 400 mA cm�2 of each VFB stack
in Dataset-1. The results are shown in Fig. 2(a)–(h) and Fig. S3
(ESI†). For the stacks with a power range from 0.5 kW to 10 kW,
the ‘‘full features’’ models have high prediction accuracy for
both efficiencies and costs. Overall, most of the predicted
values from the ‘‘full features’’ models are in agreement with
the experimental ones. After comparing the predicted with the
experiment results, it can be concluded that our ‘‘full features’’
models for Dataset-1 are reliable.

Optimization and design of the stack based on the ‘‘full
features’’ models for Dataset-1

As mentioned above, the unique advantage of linear regression
is that the interpretability between the features and the results
is extremely high. After determining the validity of the ‘‘full
features’’ models, we analyzed the coefficients for each model
to determine the effect of each feature on the efficiencies or
costs. The results are shown in Fig. 3(a) and (b). During
data preprocessing, the category parameters were encoded by
one-hot encoding, so the sum of coefficients of the same
category is zero and the relative value of the coefficient can
be used to determine its influence on the target function
(VE, EE, UE, P-cost, and E-cost). From Fig. 3(a), it can be
concluded that the effective way to lower the P-cost is to

improve the operating current density, which maintains a
high power rate of a stack. It can be easily understood that
increasing the current density will lead to high polarization and

Fig. 1 The residual plots of the ‘‘full features’’ models for Dataset-1. (a) VE %, (b) EE %, (c) UE %, (d) ln(power cost – 26), (e) ln(energy cost – 80), (f) P-cost
and (g) E-cost. The unit of P-cost and E-cost is ($ (kW h)�1 at E/P = 4 h). (h) Comparison of the mean absolute prediction error (MAPE) between the ‘‘only
current density’’ models and ‘‘full features’’ models.

Fig. 2 Comparison of the costs and efficiencies between experiment
and the ‘‘full features’’ models. Costs of (a) ‘‘VFB 20190423’’, (b) ‘‘VFB
20180920’’, (c) ‘‘VFB 20190225’’ and (d) ‘‘VFB 20200311’’; and efficiencies
of (e) ‘‘VFB 20190423’’, (f) ‘‘VFB 20180920’’, (g) ‘‘VFB 20190225’’ and
(h) ‘‘VFB 20200311’’.
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decrease the voltage efficiency, which lowers the utilization of
electrolytes. In this case, the P-cost will decrease and the E-cost
will increase. Therefore, the S-cost will first decrease and then
increase, and a suitable operating current density should be
selected.

The stacks are assembled with different kinds of key materi-
als, and their types and properties are listed in Table S3 (ESI†).
Apart from exploring key materials and an endplate with a
lower cost, the following measures can be adopted to lower the
P-cost.

Increase the cell number and electrode area to improve the
stack power; decrease the electrode thickness, and lower the
contact resistance between the electrode/bipolar plate by opti-
mizing the electrode/bipolar plate structure, using CF Type 2
with higher electrocatalytic activity (see the CV curves of two
types of carbon felts in Fig. S5, ESI†) and S Type 2.

Effective ways to lower the E-cost are as follows:
Increase the electrode thickness, cutoff voltage, electrode

compression ratio, and electrode/bipolar plate structure, and
decrease the operating current density and electrode area to
improve the voltage efficiency or decrease the polarization and
further improve the UE, using CF Type 2, BP Type 2 and S
Type 1.

It can be easily understood that the above methods can
affect the P-cost and E-cost due to the following reasons:

(1) Increasing the electrode thickness can provide more
reactive sites, which can improve the UE; however, on the
other hand a large thickness of the electrodes will cause high
ohmic polarization and thus would reduce the EE and VE
of a battery.

(2) Increasing the cut-off voltage can increase the charging
capacity of the battery, which can improve the UE and thus
reduce the E-cost.

(3) Increasing the electrode compression ratio can decrease
the electrode thickness, shortening the distance between the
current collector and the membrane for ions and electrons,
which can decrease the ohmic polarization and thus decrease
the E-cost and P-cost.

(4) Using a higher electronic conductivity bipolar plate can
lower the ohmic polarization, which can improve the performance
of the battery and thus lower the E-cost and P-cost as well.

Some features can simultaneously reduce the P-cost and
E-cost, such as using higher electrocatalytic activity carbon felt
and a higher electronic conductivity bipolar plate, which
should be chosen for the VFB stack design. However, many
features are contradictory to reduce the P-cost and E-cost
simultaneously, such as the operating current density and
electrode area. Thus, there is always an optimal operating
current density to balance the P-cost and E-cost for each
VFB stack.

From Fig. 3(b), it can be concluded that an effective method
to improve the VE and EE is as follows:

Increase the electrode compression ratio; decrease the oper-
ating current density, electrode area and thickness; optimize
the electrode/bipolar plate structure, cutoff voltage, and cell
number; and use FF Type 1 (it has the shortest flow passage and
can decrease the concentration polarization) and BP Type 2.
Effective methods to improve the UE are like the VE, apart from
the electrode thickness and cutoff voltage.

Based on the coefficient of each feature, we optimized one
stack named ‘‘VFB 20190225’’ in Database-1 and predicted its
efficiencies and cost. A comparison of the predicted results with
the experimental data is shown in Fig. 3(c) and (d) and Table S4
(ESI†). The optimal operating current density for the optimized
stack increased by 30 mA cm�2 (due to using a higher
conductivity and low contact resistance bipolar plate) and the
UE increased by 2.28%; accordingly, there was a 2.98%,
2.49%, and 2.69% reduction for the P-cost, E-cost, and S-cost,
respectively, regardless of the reduction of the VE and EE by
1.03% and 1.42%, respectively. By increasing the cutoff voltage
for each cell, the UE increases significantly, so the E-cost
reduces accordingly, while the P-cost changes little; thus, the

Fig. 3 Coefficients of the ‘‘full features’’ models, (a) P-cost and E-cost;
and (b) VE, EE, and UE. Comparison of the cost and efficiencies between
experiment and model prediction for the optimized and original stack
named ‘‘VFB 20190225’’, (c) costs and (d) efficiencies.
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S-cost can also be reduced significantly. In summary, future
R&D of materials for VFB stacks should aim to reduce their
ohmic polarization as previously discussed for vanadium flow
batteries with high power density,53,54 and alter the methods to
improve the UE while keeping the P-cost constant. The results
confirmed that the ML methodology can effectively clarify the
relationship between high-dimensional data such as the design
and optimization of VFB stacks, which is likely to accelerate the
R&D of VFB stacks.

Comparison of VFB stack efficiencies and costs in 2013, 2017
and 2019

Based on the above ML methodology, which can predict and
optimize the efficiencies and cost of VFB stacks, another VFB
dataset (Dataset-2) was established by using the data from the
years of 2012 to 2018. The ‘‘full features’’ models were still
applied to predict the efficiencies and costs for Dataset-2. The
precision analysis of the ML model to predict the efficiencies
and cost of VFB stacks in Dataset-2 is shown in Table S5 (ESI†).
The operating current density range is 80 mA cm�2 to
200 mA cm�2 in Dataset-2. To have a comprehensive comparison
with our recent generation VFB stacks, we chose 3 stacks that
were assembled and tested in 2013, 2017 and 2019, respectively.

With the help of the ML methodology, the predicted VE,
EE, UE, P-cost, E-cost and S-cost of these stacks working at
different current densities can be compared and are shown in
Fig. 4(a)–(c) and Table 2. Overall, the S-cost under the optimal
operating current density is reduced from $475.36 per kW h
(at E/P = 4 h) in 2013 to $379.83 per kW h (at E/P = 4 h) in 2017
and then to $267.21 per kW h (at E/P = 4 h) in 2019. The
efficiencies of the stack in 2017 are slightly less than those in
2013. However, because the use of CF Type 1 is vastly cheaper than

that of CF Type 2, the optimal operating current density changed
from 135 mA cm�2 to 90 mA cm�2, which led to higher efficiencies
and a lower cost. With the optimization of the VFB stack structure,
the efficiencies in 2019 are the highest with the same electrode
material CF Type 1, which led to a further cost reduction. The
optimal operating current density changed from 90 mA cm�2 in
2017 to 110 mA cm�2 in 2019, while the efficiencies, especially the
UE, improved. This result guides future R&D of VFB stacks to
improve the utilization efficiency of electrolytes under high operat-
ing current densities.

In recent years, we have tried to decrease the polarization
of the stack by optimizing the battery structure (flow field,
electrode inlet diversion structure, compression ratio, etc.),
developing high performance key materials e.g. exploring mem-
branes with improved selectivity and conductivity, electrodes
with higher electrochemical activity, and bipolar plates with
higher electron conductivity. As a result, the power density was
increased dramatically and further the cost was reduced.

Analysis of the VFB system cost proportion with different cell
numbers

Based on the materials and structure optimization of the stack
named ‘‘VFB 20190225,’’ we changed the cell number to 5 or
30 (other parameters will also change with the value of the cell
number) and predicted the cost for each stack with an operat-
ing current density range from 100 mA cm�2 to 400 mA cm�2

[Fig. 5(a)]. Then, the cost proportion of each part of the three
stacks would vary with the operating current density accord-
ingly [Fig. 5(b)–(d)]. With the increase in cell number, there was
a remarkable reduction of the P-cost without a marked change
of the E-cost, which led to a notable reduction of the S-cost.
The electrolyte cost accounts for approximately 60% at the

Fig. 4 Predicted results for each stack in 2013, 2017 and 2019. (a) Costs, (b) efficiencies, and (c) comparison of each cost at the optimal operating
current density.

Table 2 Comparison of efficiencies and costs between three stacks assembled in three different years at the optimal operating current density

Stack in 2013 Stack in 2017 Stack in 2019

The optimal operating current density (mA cm�2) 135 90 110
VE (%) 85.69 87.31 90.40
EE (%) 84.52 85.32 89.32
UE (%) 48.20 57.17 70.70
P-cost 221.13 165.99 101.53
E-cost 254.24 213.85 165.69
S-cost 475.36 379.83 267.21

The unit of P-cost and E-cost is ($ (kW h)�1 at E/P = 4 h).
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optimal operating current density for each stack, which has the
highest share, and its proportion increased significantly with
the increase in operating current density. Therefore, the most
effective way to reduce the S-cost is to reduce the E-cost (improve
the UE) at high operating current density.

Cost change of a VFB system with different VE and UE

Finally, the relationship between the efficiencies and S-cost for
our optimized VFB stack of the latest generation was predicted
based on the ‘‘full features’’ models and current material costs.
The mappings of current density (mA cm�2)–VE (%)–S-cost
($ (kW h)-1 at E/P = 4 h) with a UE range from 60% to 100%
are shown in Fig. 6(a)–(i). For example, if the current density is
200 mA cm�2, and the VE of a stack reaches 90%, when the UE
is maintained at 60%, the S-cost is about $273 per kW h; if the
UE increases to 80%, the S-cost will decrease to around $223
per kW h (E/P = 4 h). However, the cost can further decrease to
$206 per kW h (E/P = 4 h) when UE increases to 90%. To further
optimize the operating conditions and reduce the cost, the S-
cost at E/P = 10 h and E/P = 20 h was predicted and the results
are shown in Fig. S4 (ESI†). If the UE is maintained at 80%, the
S-cost is about $182 per kW h at E/P = 10 h and $165 per kW h at
E/P = 20 h, which are 18% and 26% lower than that at E/P = 4 h.
The results indicate that a VFB is more suitable for longer
duration energy storage. In summary, the future R&D of VFB
stacks should still focus on high current density with both
high VE and UE to rapidly promote their industrialization in
large-scale energy storage.

To realize the above target, the work on key materials and
the stack architecture needs to be focused to decrease the
polarization and further improve the power density and UE in
the future. For example, to explore membranes with higher
conductivity, electrodes with higher activity and conductivity are
preferred to decrease the ohmic and electrochemical polarization.
Further optimization of the battery structure is also very important
to decrease the concentration polarization and to improve the
battery performance and further decrease the cost.

Conclusions

In summary, we successfully integrated the state-of-art ML
methodology with our experiments in the R&D of VFB stacks,
and optimized their materials and structures, and then pre-
dicted future development. This methodology could remark-
ably shorten the R&D and industrialization of VFB technology
and it can be extended to other materials and structure design
or the equipment-operating condition optimization of flow
batteries. The models can reach a prediction accuracy of MAPE
within 1% for both the VE and EE between experiment and
predicted results, and within 5.2% for the UE, P-cost and E-cost,
which is regarded as reliable and can be used to assist the
optimization of VFB stacks and predict their performance
and cost. As the E-cost accounts for the highest proportion
(about 60% at the optimal operating current density) of the
total cost within a VFB system, the core objective is to improve
the UE of VFB stacks at a high current density, which would

Fig. 5 (a) Comparison of the costs of the stacks with the same structure but different cell number; and the change of the proportion of the key materials
in the VFB system with the operating current density with (b) cell number = 5, (c) cell number = 10, and (d) cell number = 30. The white dotted line in (b–
d) represents the optimal operating current density of each stack.
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promote their rapid industrialization in large-scale energy
storage. For example, the development of materials for the
VFB stack should focus on reducing the electrochemical polari-
zation and ohmic polarization at high current densities, and
the design of the flow field should monitor the enhancement of
mass transfer to decrease the concentration polarization of the
flow battery stacks.
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