VRFBS ARE THE SOLUTION TO RENEWABLE ENERGY STORAGE CHALLENGES

Vanadium Redox Flow Battery (VRFB) technology utilises a non-flammable, aqueous electrolyte which contains vanadium that can be recovered and recycled at the end of the VRFB's cycle life

WATER-BASED ELECTROLYTE:

eliminates the risk of fire or release of harmful gases into the environment.

EXISTS IN 4 DIFFERENT OXIDATION STATES:

removes the potential for cross-contamination which is inherent in other flow batteries.

COST-EFFECTIVE:

recycling and reusing the vanadium electrolyte in a new VRFB potentially reduces the battery's energy costs.

REDUCES CARBON FOOTPRINT OF VRFBS:

recycling the vanadium electrolyte can reduce carbon emissions by up to **78%** per MWh¹.

NO LOSS OF EFFICIENCY AT END OF LIFE:

vanadium in the electrolyte retains its efficiency regardless of number of charge/discharge cycles.

HOW VRFBS ARE POSITIVELY IMPACTING THE ENVIRONMENT

The recovery rate for the vanadium in VRFB electrolytes, thus proving the recyclability of VRFB electrolyte.²

Using recovered vanadium electrolyte as a feedstock for vanadium production uses less energy. Recovered VRFB electrolyte is also the most efficient vanadium feedstock.

